Present and Future of Blood-Based Biomarkers of Alzheimer's Disease: Beyond the Classics
Brain Res. 2024 May 1;1830:148812. doi: 10.1016/j.brainres.2024.148812. Epub 2024 Feb 17.
ABSTRACT
The field of blood-based biomarkers for Alzheimer's disease (AD) has advanced at an incredible pace, especially after the development of sensitive analytic platforms that can facilitate large-scale screening. Such screening will be important when more sophisticated diagnostic methods are scarce and expensive. Thus, blood-based biomarkers can potentially reduce diagnosis inequities among populations from different socioeconomic contexts. This large-scale screening can be performed so that older adults at risk of cognitive decline assessed using these methods can then undergo more complete assessments with classic biomarkers, increasing diagnosis efficiency and reducing costs to the health systems. Blood-based biomarkers can also aid in assessing the effect of new disease-modifying treatments. This paper reviews recent advances in the area, focusing on the following leading candidates for blood-based biomarkers: amyloid-beta (Aβ), phosphorylated tau isoforms (p-tau), neurofilament light (NfL), and glial fibrillary acidic (GFAP) proteins, as well as on new candidates, Neuron-Derived Exosomes contents (NDEs) and Transactive response DNA-binding protein-43 (TDP-43), based on data from longitudinal observational cohort studies. The underlying challenges of validating and incorporating these biomarkers into routine clinical practice and primary care settings are also discussed. Importantly, challenges related to the underrepresentation of ethnic minorities and socioeconomically disadvantaged persons must be considered. If these challenges are overcome, a new time of cost-effective blood-based biomarkers for AD could represent the future of clinical procedures in the field and, together with continued prevention strategies, the beginning of an era with a lower incidence of dementia worldwide.
PMID:38369085 | DOI:10.1016/j.brainres.2024.148812